MATH 579 Exam 4 Solutions

Part I: Recall the difference operator Δ, where $\Delta f(x)=f(x+1)-f(x)$. Define the shift operator E, as $E f(x)=f(x+1)$. Prove the product rule $\Delta(u v)=u \Delta v+(E v) \Delta u$. Prove summation by parts: $\sum u \Delta v \delta x=u v-\sum(E v) \Delta u \delta x$. Find a closed form for $\sum_{k=0}^{n} k 2^{k}$.
$\Delta(u(x) v(x))=u(x+1) v(x+1)-u(x) v(x)=u(x+1) v(x+1)-u(x) v(x+1)+u(x) v(x+1)-$ $u(x) v(x)=v(x+1) \Delta u+u(x) \Delta v=u \Delta v+(E v) \Delta u$, which is the product rule. We rearrange to get $u \Delta v=\Delta(u v)-(E v) \Delta u$, then sum over all x (and use FTDC to get $\sum \Delta(u v)=u v$, with the constant absorbed into one of the other sums) to get the summation by parts formula. Finally, we seek $\sum_{0}^{n+1} x 2^{x} \delta x$. We seek an anti-difference to $x 2^{x}$. We set $u=x, \Delta v=2^{x}$. Hence $\Delta u=1, v=2^{x}, E v=2^{x+1}$, so $\sum x 2^{x} \delta x=x 2^{x}-\sum 2^{x+1} 1 \delta x=x 2^{x}-2 \sum 2^{x} \delta x=x 2^{x}-2 \cdot 2^{x}+C=$ $x 2^{x}-2^{x+1}+C$. In other words, $\Delta\left(x 2^{x}-2^{x+1}+C\right)=x 2^{x}$. By the fundamental theorem of difference calculus, $\sum_{k=0}^{n} k 2^{k}=\sum_{0}^{n+1} x 2^{x} \delta x=x 2^{x}-\left.2^{x+1}\right|_{0} ^{n+1}=(n+1) 2^{n+1}-2^{n+2}-\left(02^{0}-2^{1}\right)=$ $(n+1) 2^{n+1}-2 \cdot 2^{n+1}+2=(n-1) 2^{n+1}+2$.

Part II:

1. Prove that for $n \in \mathbb{N}_{0}, 3^{n}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}$.

This follows directly from Newton's binomial theorem with $x=2, y=1$.
2. Prove that for $n \in \mathbb{N},\binom{2 n}{n}<4^{n}$.

Here is a combinatorial proof. We choose subsets from $[2 n] .2^{2 n}=4^{n}$ counts all possible subsets; $\binom{2 n}{n}$ counts only those subsets of size n, which is not all possible subsets (e.g. the empty set is not included).
3. How many northeastern lattice paths are there from $(0,0)$ to $(20,10)$ that do not pass through $(15,5)$?

The set of northeastern lattice paths from $(0,0)$ to (j, k) is isomorphic with the set of words of length $j+k$ consisting of j N's, and k E's. There are $\binom{j+k}{j}$ such words. Hence there are $\binom{30}{10}=30,045,015$ paths, ignoring the restriction. We now count how many paths DO pass through $(15,5)$ - they consist of a path from $(0,0)$ to $(15,5)$, followed by a path from $(15,5)$ to $(20,10)$. There are $\binom{20}{5}$ of the former. The latter paths are isomorphic to paths from $(0,0)$ to $(5,5)$, of which there are $\binom{10}{5}$. Hence there are $\binom{20}{5}\binom{10}{5}=15,504 \cdot 252=3,907,008$ forbidden paths, and hence $30,045,015-3,907,008=26,138,007$ desired paths.
4. Prove that for $k, m, n \in \mathbb{N},\binom{n+m}{k}=\sum_{i=0}^{k}\binom{n}{i}\binom{m}{k-i}$.

Here is a combinatorial proof. We have n numbered red balls, and m numbered blue balls. There are $\binom{n+m}{k}$ ways to choose k balls from the combined set, without regard to color. On the other hand, if we care about color, then let i denote the number of red balls chosen; $k-i$ must be the number of blue balls chosen. As i varies, we get a partition of the selection (sum rule). There are $\binom{n}{i}$ ways to choose the red balls, and $\binom{m}{k-i}$ ways to choose the blue balls. These two selections are independent (product rule).
5. When we expand $\left(x_{1}+x_{2}+\cdots+x_{m}\right)^{n}$ fully, what is the largest coefficient?

Each coefficient will be of the form $\frac{n!}{a_{1}!a_{2}!\cdots a_{m}!}$, where $a_{1}+a_{2}+\cdots+a_{m}=n$. We now prove that the maximal coefficient will have $\left|a_{i}-a_{j}\right| \leq 1$, for all i, j. Suppose otherwise, that $a_{i} \geq a_{j}+2$. Well, consider instead $a_{i}^{\prime}=a_{i}-1, a_{j}^{\prime}=a_{j}+1 . \quad \frac{\left(a_{i}^{\prime}\right)!\left(a_{j}^{\prime}\right)!}{\left(a_{i}\right)!\left(a_{j}\right)!}=\frac{a_{j}+1}{a_{i}}<1$ since $a_{i} \geq a_{j}+2$. Hence by replacing a_{i}, a_{j} with $a_{i}^{\prime}, a_{j}^{\prime}$ we can make the denominator smaller and the coefficient bigger, contradicting the maximality assumption.
So, each a_{i} will equal either $s=\left\lceil\frac{n}{m}\right\rceil$, or $t=\left\lfloor\frac{n}{m}\right\rfloor$. But how many of each? For this we need the division algorithm: there are q, r such that $n=m q+r$. Hence, the largest coefficient is $\frac{n!}{(s!)^{r}(t!)^{m-r}}=\frac{n!}{(s!)^{m} t^{r}}$.

Exam grades: High score $=102$, Median score $=84$, Low score $=52$

