
MATH 579 Exam 4 Solutions

Part I: Recall the difference operator ∆, where ∆f(x) = f(x + 1) − f(x). Define the shift operator E,
as Ef(x) = f(x + 1). Prove the product rule ∆(uv) = u∆v + (Ev)∆u. Prove summation by parts:∑

u∆vδx = uv −
∑

(Ev)∆uδx. Find a closed form for
∑n

k=0 k2k.
∆(u(x)v(x)) = u(x + 1)v(x + 1) − u(x)v(x) = u(x + 1)v(x + 1) − u(x)v(x + 1) + u(x)v(x + 1) −
u(x)v(x) = v(x + 1)∆u + u(x)∆v = u∆v + (Ev)∆u, which is the product rule. We rearrange
to get u∆v = ∆(uv) − (Ev)∆u, then sum over all x (and use FTDC to get

∑
∆(uv) = uv,

with the constant absorbed into one of the other sums) to get the summation by parts formula.
Finally, we seek

∑n+1
0 x2xδx. We seek an anti-difference to x2x. We set u = x,∆v = 2x. Hence

∆u = 1, v = 2x, Ev = 2x+1, so
∑

x2xδx = x2x−
∑

2x+11δx = x2x−2
∑

2xδx = x2x−2·2x+C =
x2x − 2x+1 + C. In other words, ∆(x2x − 2x+1 + C) = x2x. By the fundamental theorem of dif-
ference calculus,

∑n
k=0 k2k =

∑n+1
0 x2xδx = x2x−2x+1|n+1

0 = (n+1)2n+1−2n+2− (020−21) =
(n + 1)2n+1 − 2 · 2n+1 + 2 = (n − 1)2n+1 + 2.

Part II:
1. Prove that for n ∈ N0, 3n =

∑n
k=0 2k

(
n
k

)
.

This follows directly from Newton’s binomial theorem with x = 2, y = 1.

2. Prove that for n ∈ N,
(
2n
n

)
< 4n.

Here is a combinatorial proof. We choose subsets from [2n]. 22n = 4n counts all possible
subsets;

(
2n
n

)
counts only those subsets of size n, which is not all possible subsets (e.g. the

empty set is not included).

3. How many northeastern lattice paths are there from (0, 0) to (20, 10) that do not pass through (15, 5)?

The set of northeastern lattice paths from (0, 0) to (j, k) is isomorphic with the set of words
of length j + k consisting of j N’s, and k E’s. There are

(
j+k

j

)
such words. Hence there are(

30
10

)
= 30, 045, 015 paths, ignoring the restriction. We now count how many paths DO pass

through (15, 5) – they consist of a path from (0, 0) to (15, 5), followed by a path from (15, 5)
to (20, 10). There are

(
20
5

)
of the former. The latter paths are isomorphic to paths from

(0, 0) to (5, 5), of which there are
(
10
5

)
. Hence there are

(
20
5

)(
10
5

)
= 15, 504 · 252 = 3, 907, 008

forbidden paths, and hence 30, 045, 015 − 3, 907, 008 = 26, 138, 007 desired paths.

4. Prove that for k,m, n ∈ N,
(
n+m

k

)
=

∑k
i=0

(
n
i

)(
m

k−i

)
.

Here is a combinatorial proof. We have n numbered red balls, and m numbered blue balls.
There are

(
n+m

k

)
ways to choose k balls from the combined set, without regard to color. On

the other hand, if we care about color, then let i denote the number of red balls chosen; k− i
must be the number of blue balls chosen. As i varies, we get a partition of the selection (sum
rule). There are

(
n
i

)
ways to choose the red balls, and

(
m

k−i

)
ways to choose the blue balls.

These two selections are independent (product rule).

5. When we expand (x1 + x2 + · · · + xm)n fully, what is the largest coefficient?

Each coefficient will be of the form n!
a1!a2!···am! , where a1 + a2 + · · ·+ am = n. We now prove

that the maximal coefficient will have |ai − aj | ≤ 1, for all i, j. Suppose otherwise, that

ai ≥ aj + 2. Well, consider instead a′i = ai − 1, a′j = aj + 1. (a′i)!(a
′
j)!

(ai)!(aj)!
= aj+1

ai
< 1 since

ai ≥ aj + 2. Hence by replacing ai, aj with a′i, a
′
j we can make the denominator smaller and

the coefficient bigger, contradicting the maximality assumption.
So, each ai will equal either s = d n

me, or t = b n
mc. But how many of each? For this we need

the division algorithm: there are q, r such that n = mq + r. Hence, the largest coefficient is
n!

(s!)r(t!)m−r = n!
(s!)mtr .
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